
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 2, 2023 

563 | P a g e  

www.ijacsa.thesai.org 

Compiler Optimization Prediction with New  

Self-Improved Optimization Model 

Chaitali Shewale
1
, Sagar B. Shinde

2
, Yogesh B. Gurav

3
, Rupesh J. Partil

4
,
 
Sandeep U. Kadam

5
 

Vishwakarma Institute of Information Technology, Pune
1 

Dr. D. Y. Patil Institute of Technology, Pimpri, Pune
2
 

Navsahyadri College of Engineering, Pune
3, 4

 

Anantrao Pawar College of Engineering & Research, Pune
5
 

 

 
Abstract—Users may now choose from a vast range of 

compiler optimizations. These optimizations interact in a variety 

of sophisticated ways with one another and with the source code. 

The order in which optimization steps are applied can have a 

considerable influence on the performance obtained. As a result, 

we created a revolutionary compiler optimization prediction 

model. Our model comprises three operational phases: model 

training, feature extraction, as well as model exploitation. The 

model training step includes initialization as well as the 

formation of candidate sample sets. The inputs were then sent to 

the feature extraction phase, which retrieved static, dynamic, and 

improved entropy features. These extracted features were then 

optimized by the feature exploitation phase, which employs an 

improved hunger games search algorithm to choose the best 

features. In this work, we used a Convolutional Neural Network 

to predict compiler optimization based on these selected 

characteristics, and the findings show that our innovative 

compiler optimization model surpasses previous approaches. 
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extraction; feature exploitation; improved hunger games search 
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I. INTRODUCTION 

As per Moore's Law, the density of transistors doubles 
every 2 years. Compilers, on the other hand, progress at a pace 
of a couple percent of year. Compilers were vital tools for 
connecting written software to destination hardware. In the 
field of compilers, there's several unresolved research issues 
[1].Compilers play a crucial role in software development. Its 
core objective is to boost software productivity [2]. 

Compilers were liable for two tasks: translation as well as 
optimization. They must first effectively convert programmes 
into binary. Secondly, they must discover the most cost-
effective translation. There are numerous valid translations, 
each of which performs distinctively. The great majority of 
studies and technological activities are centered on this second 
performance objective, which has been referred to as 
optimization. The objective was mislabeled because, until 
recently, most people rejected obtaining an ideal translation as 
a difficult and impractical task [3].Compilers are now being 
improved so that every code block in a programmed may be 
transformed into an efficient application [4]. Traditional 
compiler optimization seems to be a difficult process with no 
assurances of producing the most effective and quickest target 
code [5].A compiler enables a multitude of code optimizations 
that could be activated or disabled via a compilation flag in 

order to enhance the throughput of compiled applications. 
Nevertheless, because the influence of compiler optimizations 
largely dependent on programme features (e.g., programme 
structures), the identical optimizations may not surely result in 
the identical runtime speed boost when implemented to various 
programmes [6]. 

Furthermore, there's an infinite range of flag combos owing 
to the enormous count of optimization flags. Users may find it 
difficult to comprehend all of the flags including their combos, 
and to correctly decide which flags should be activated or 
disabled in attempt for built programmes to attain the desired 
runtime performance [7].Compilers for machine learning (ML) 
tackle a lot of optimization issues in order to convert an ML 
programmed, which is often expressed as a tensor 
computational graph, into an efficiently executable for a 
hardware destination [8]. Prior efforts [9] – [14] have permitted 
optimizations that are implemented at the very same point in 
the compilation pipeline, notably the loop conversion phase. 
However, since compiler modifications are arranged as passes 
to minimize complication and also have rigorous ordering 
limitations, this is unfeasible in production compilers. 

With a compiler's optimization capabilities influencing so 
many parts of product development, understanding and 
evaluating a compiler's optimization technology is more critical 
than ever. In this work, an improved optimization prediction 
model was created, which not only decreases computational 
time but also enables the compilers with faster convergence, 
more stable balance, and high-quality outcomes by selecting 
appropriate optimization. Our work made the following 
contributions: 

 Several high-level characteristics may arise from the 
coefficients as a result of improved entropy extraction, 
which boosts the compiler optimization prediction. 

 An Improved Hunger Game Search optimization was 
proposed to provide a very competitive performance to 
the compiler with less computational time. 

The following is the flow of this article: Section II covers 
some previous relevant research, Section III gives a brief 
presentation of our proposed compiler optimization prediction 
model, Section IV gives the outcomes of our work, and 
Section V contains the conclusion, while the following section 
includes the references for this work. 
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II. RELATED WORKS AND REVIEW 

Some of the researches presented by various researchers on 
compiler optimization were reviewed here. 

Hui et al. [15] presented the ALIC iterative compiler 
optimization parameters estimation model, which has minimal 
overheads. Firstly, the target programmes were defined using 
static-dynamic characteristics format depending on feature 
significance, as well as an early optimization prediction model 
was built using the classifier. Subsequently, for every sample, a 
dynamic amount of sample observation methodology was 
being used. The most beneficial test from the collection of 
candidate samples typically the chosen and labeled with each 
mark increase the count of sample data. The optimization 
prognosis system is then built by using intermediate prediction 
network, which actively learns candidate samples. 

Tiago et al. [16] suggested a new exploration approach to 
determine a compiler optimization strategy. This hybrid 
methodology utilizes previously created sequences for a series 
of training programmes in order to uncover optimizations as 
well as their deployment order. A clustering method selects 
optimizations during the first stage, and then a metaheuristic 
algorithm determines the order wherein the compiler would 
execute every optimization in the latter. The LLVM compilers 
as well as an I7 processor have been used to assess this 
strategy. 

Supun et al. [17] developed HUMMINGBIRD, a unique 
prototype scoring technique that incorporates featurization 
operators with classic ML designs (e.g., decision trees) into a 
limited collection of tensor operational processes. This method 
decreases infrastructure overhead by using current investments 
in Neural Net compilers but also runtimes to produce efficient 
calculations for both CPU as well as hardware accelerators. 
The findings indicate that HUMMINGBIRD performs 
compatible. 

Mircea et al. [18] introduced MLGO1, a methodology for 
comprehensively incorporating machine learning methods into 
an industrial compiler— LLVM. It's the first time ML has been 
fully integrated in a sophisticated compiler run in a real-world 
context. It's in the LLVM main repository. As contrasted to the 
state-of-the-art LLVM -Oz, we apply two alternative ML 
techniques to train the inlining-for-size method: Policy 
Gradient as well as Evolutionary Algorithms. 

Aleksandar et al. [19] presented a revolutionary JIT 
compiler inlining approach that gradually investigates a 
program's call network and switches between inlining as well 
as optimizations. Three new heuristics have been developed to 
steer this inliner. Graal, a dynamic JIT compiler for the 
HotSpot JVM, was used to create this technique. Benchmarks 
such as Java DaCapo, Scalabench, and others were utilized to 
test the suggested algorithm. 

Conventional systems to prediction model creation 
frequently employ a random selection search strategy, which 
can often lead to information redundancy. Moreover, the 
sample program gets exposed to a fixed number of repetitive 
measurements due to the influence of run-time disturbances. 
Unfortunately, if there are few sounds, the recurrent 
measurements will lead to a significant loss of iterative 

compilation time overheads. Decreasing iterative compilation 
overheads and predicting an appropriate compiler optimization 
with less computational time and increased compiler 
performance was still challenging. 

III. PROPOSED COMPILER OPTIMIZATION PREDICTION 

MODEL 

This proposed compiler optimization model comprises 
three working phases: model training, feature extraction [24, 
25], as well as model exploitation (feature selection). First, the 
inputs were fed into the model training phase, which tries to 
match the right weights as well as bias to a learning algorithm 
[26, 27] in order to minimize a loss function throughout the 
validation range. The retrieved characteristics, such as static, 
dynamic, as well as improved entropy, were then transferred to 
the model exploitation phase [21], where the optimal features 
were chosen utilizing the improved chaos game optimization. 
These optimized features were given to Convolutional Neural 
Network for prediction of compiler optimization. The 
architecture of our improved compiler optimization prediction 
model is given in Fig. 1. 

 
Fig. 1. Proposed improved compiler optimization prediction model 

architecture. 

A. Model Training Phase 

The initialization and candidate sample set generation takes 
place in the model training phase. The initialization model will 
be built in the training set with some labeled samples. The 
initialization model will be used as the intermediate prediction 
model later. The candidate samples set include both the 
unlabeled samples in the training set and the labeled samples 
with the number of observations. 
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B. Feature Extraction 

Outputs from model training phase were given to the 
feature extraction phase to extract the static, dynamic and 
improved entropy features [26, 27]. 

1) Static features: The values of static features do not vary 

over time and are set for every sample. The lists of the static 

features extracted in this work were shown in Fig. 2. 

2) Dynamic features: The values of dynamic features 

fluctuate over time and are not constant. Fig. 3 depicts the 

dynamic characteristics retrieved in this work. 

3) Improved entropy feature extraction: The count of 

coefficients is generally so large that it is challenging to utilize 

them directly as features for categorization or prediction. As a 

result, several high-level features might emerge from these 

coefficients for improved prediction. Entropy seems to be a 

tool for measuring the uncertainty of data content in specific 

mechanisms, and it is frequently employed in signal analysis, 

pattern recognition, pattern matching, and other fields. . Some 

kinds of entropy include Shannon entropy (SE), log energy 

entropy (LEE), Renyi entropy (RE), as well as Tsallis entropy 

(TE). Renyi entropy is utilized to retrieve features from input 

data in this work. Entropy may be estimated via energy. 

Wavelet energy, described as Eq. (1), will be used to assess the 

data of the coefficient a of the b-th node at the c-th level. 
2

, , , ,a b c a b cE d
          (1) 

The total energy for the b-th node at the c-th level may then 
be determined utilizing Eq. (2) 
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Where M indicates the number of node matching 
coefficients Eq. (3) may be used to compute the probability of 
the c-th coefficient at its associated node: 
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Where the sum of 
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Renyi Entropy of order q(q ≥ 0 and q 6= 1) gets described 
as 
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The parameter of q in RE should be optimized to provide 
better results. In our work, the improved entropy features were 
extracted using the eq. (5) 
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Fig. 2. Extracted static features. 

 

Fig. 3. Extracted dynamic features. 

Here a  denotes the weight, which is calculated by  
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Following the calculation of the entropy of each terminal 
node, the entropies of all terminal nodes are concatenated to 
form a feature vector. These features were sent to the model 
exploitation phase for feature selection. 

 

STATIC 

FEATURES  

    - Method's count of fundamental blocks" 

    - Number of basic blocks that have just one successor 

    - Number of fundamental blocks having two successors 

    - Number of fundamental blocks that have two predecessors 

    - The count of fundamental blocks that have more than two predecessors 

    - Number of fundamental blocks having two successors as well as two 

predecessors 

    - The count of fundamental blocks that have more than two successors as 

well as more than two predecessors. 

    - Number of fundamental blocks which have more than two successors 

    - Number of fundamental blocks that have just one predecessor 

    -The number of fundamental blocks that have only one predecessor & one 
successor 

    - Count of basic blocks that have just one predecessor as well as two 

successors 

    - Count of fundamental blocks having two predecessors as well as one 
successor 

    - Count of basic blocks with fewer than 15 instructions 

    - Count of basic blocks containing instructions in the range [15, 500] 

    - Number of fundamental blocks with more than 500 instructions 

    -Count of control flow graph edges 

    - The count of critical edges in a control flow graph. 

    -Number of  control flow graph's abnormal edges 

    - The count of direct calls in the technique 

    - The method's conditional branch count 

    - The method's count of assignment instructions 

    - The method's count of binary integer operations 

    - The method's count of binary floating point operations 

    - The method's instruction count 

    - Number of instructions in basic blocks on average 

    - The average of phi-node arguments 

    - The average number of phi-nodes at the starting of a basic block 

    - The count of basic blocks with phi nodes between [0, 3] 

    - The number of basic blocks that have no phi nodes 
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C. Model Exploitation 

The feature selection procedure is taking place during this 
model exploitation phase. When creating forecasting models, 
feature selection is the technique of minimizing the count of 
input variables. It is preferable to limit the count of input 
variables in order to reduce modeling computational costs and, 
in certain situations, increase model performance. For that 
reason we used an improved HGS Optimization. 

1) Improved Hunger Game Search (IHGS) Optimization: 

The HGSO technique is influenced by normal animal 

behaviors including terror of being eaten by predators as well 

as hunger. The mathematical modelling of the HGSO strategy 

is explained in this portion of the publication. The modelling is 

based on social selection and hunger-driven behaviour. 

This section quantitatively models the approaching 
behaviour of hunger. Eq. (7), which explains the foraging 
hunger as well as individual supportive communication 
activities, contains the game instructions. The contraction 
mode is imitated by the mathematical formula in Eq. (7). 

1 2

1 2

( ).(1 (1)), 1

( 1) . . . ( ) , 1 , 2

. . . ( ) , 1 , 2

d d

d d

Z t randn r l

Z t W Z R W Z Z t r l r H

W Z R W Z Z t r l r H






 


     


    
  (7) 

where ( )Z t  signifies the location of all individuals, dZ

indicates the position of the best individual, 1.W  and 2W  

seem to be hunger weights of hunger, R


 is between [-a, a], 

r1 and r2 seem to be random numbers between [0, 1], randn(1) 
denotes a normal distributed random number, and t seems to be 
the count of current iterations. The parameter l represents the 
HGSO algorithm's control variable that governs the algorithm's 
sensitivity. H stands for variation control for all locations. 

2) Opposite behavior learning: Amongst the most 

effective instructional procedures, opposition-based learning 

(OBL), has been extensively embraced as an excellent learning 

phase to improve the searching capabilities of algorithms. 

When assessing a solution Y to a given issue, a novel 

opportunity will be gained that brings the candidate solution 

closer to the optimal solution if the opposing solution of Y is 

estimated at the same time. The opposing number as well as 

opposite point notions were described as follows. 

OBL is a learning approach that is centered on the inverse 

number
oY . Y is described as a real number, Y ∈ [e, f]. 

oY 's 
opposite may be defined as (8), where e, f are the bounds. 

oY e f Y  
                      (8) 

When seems to be a point in a D-

dimensional space, 
jY ,...,

DY . je as well as 
jf  represent the 

current population's low and high borders, which vary with 

each iteration. An opposing point in several dimensions has 
been described as 

     (9) 

In our work, to generate chaotic opposite solution we have 
used the following equation 

   (10) 

Here rand was generated using the sine map.
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Variation control for all positions H stated in eq. (12) 

 sech ( )H F i BF 
             (12) 

where F(i) represents the cost function value of every 
population, I = 1, 2,..., n, BF represents the best cost function 
value acquired during the latest incarnation, and Sech 
represents the hyperbolic function and thus is equal to 

. 

In our work, we used the reciprocal of the hyperbolic 
function Csch,which is expressed in eqn.,(13) 

           (13) 

Here  

Eqn.,(14) gives the expression for R


. 

2R h r h


         (14) 

 

Where iterMax  denotes the maximum number of iterations 

and rand denotes a random number between [0, 1] 

3) Hunger role: This portion quantitatively models the 

hunger behavior of all individuals during the search. The 

formula for 1W  is given in Eq. (15). 

1
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The expression for 2W is presented in Eq. (16). 

  2^ ( ) 1 exp ( ) 5 2W k hungry k SHungry ra     
 (16) 

where N represents population size, hungry means 
population starvation, SHungry represents the total of 
population starvation, i.e., sum(hungry), as well as ra3, ra4, and 
ra5 signify random values between [0, 1]. Each population's 
starving is quantitatively represented in Eq. (17). 
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hungry k H AllFitness k BF


 

   (17) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 2, 2023 

567 | P a g e  

www.ijacsa.thesai.org 

whereAllFitness(k) would be the present iteration's cost 
function value for every population Depending on the real 

starving, a new starvation newH H is added. The equation 

represents the formula for newH . 

(1 )

,
new

LH ra TH LH
H

TH TH LH

  
 

       (18) 

( )
6 2 ( )

F k BF
TH ra UB LB

WF BF


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     (19) 

where 
newH has been constrained to a lower bound LH, ra 

would be a random number among [0, 1], WF as well as BF 
seem to be the worst best fitness acquired during the latest 
iteration, respectively, F (k) has become the fitness of every 
population, ra6 would be a random number between [0, 1], and 
LB as well as UB are indeed the lower and upper boundaries of 
the dimensions, respectively. The selected features were sent to 
the CNN for compiler optimization prediction. 

D. Prediction using CNN 

Convolutional networks were deep training strategies that 
extract information from input pictures by convolving them 
with filters or kernels. Convolution of a GCG picture with a 

S Sf Cf filter learns the same characteristic on the whole picture. 

After each action, the window moves, and the feature maps 
learn the characteristics. The feature maps record the image's 
local receptive area and operate with mutual weights as well as 
biases. Equation (20) depicts the output matrix size without 
padding, whereas Equation (21) depicts the convolution 
procedure. Padding has been utilized to keep the size of the 
given picture constant. The output picture size is the same as 
the input image size in a 'SAME' padding, and there is no 
padding in a "VALID" padding. Equation depicts the output 
matrix size with padding (22). 

1S SGCG f Cf G F   
        (20) 

 2 2

, ,0 0 v q v m qv q
o m w     
  

 
(21) 

                          (22) 

Here, O is the output, P is the padding, S is the stride, m is 
the bias, σ is the sigmoidal activation function, w is a 3x3 

weight matrix of shared weights and 
1, 2p p is the input 

activation at position p1,p2. The output O provides the 
prediction results. 

IV. RESULTS AND DISCUSSION 

A. Simulation Setup 

The unique methodology for compiler optimization 
utilizing IHGS was implemented in Python. The standard 
performance evaluation group created the SPEC CPU2006 
training set to evaluate general-purpose CPU performance [20]. 

The input scale of the SPEC2006 benchmark may be split into 
test, train, as well as reference scales; we utilize the reference 
scale to test." In this case, analysis was performed for multiple 
measures such as accuracy [22,23] and error metrics such as 
MSE, MSLE, and so on. In addition, IGHS outperformed the 
HGS, PRO, CMBO, ARCHOA, DO, as well as GOA models. 

B. Performance Analysis 

The research on diverse metrics including accuracy, 
sensitivity, specificity as well as precision was detailed here. 
Here, the analysis was done for LPs (Learning Percentages) of 
60, 70, 80 and 90 over HGS, PRO, CMBO, ARCHOA, DO, 
GOA models which is shown in Fig. 4. For 60 LP, CMBO and 
HGS achieve the accuracy rate of 0.69 and 0.76 whereas our 
proposed IHGS model achieves the accuracy rate of 0.84. At 
80 and 90 LPs our proposed IHGS achieves the accuracy rate 
of 0.9 and 0.94 which is higher than other models. When our 
proposed IHGS achieves the precision value of 0.9, ARCHOA, 
CMBO models achieves only 0.8 and 0.81 for 60 LP which 
proves the superiority of proposed IHGS model. For 80 and 90 
LPs, PRO model attain the sensitivity and specificity values of 
0.83, 0.85 and 0.83, 0.85 while our proposed IHGS method 
achieves the values of 0.85, 0.93 and 0.89, 0.94 which proves 
that our proposed IHGS method achieves high performance for 
the compiler optimization identification than other 
conventional models. 

The most often employed KPIs to estimate forecast 
accuracy were MAPE, MAE, RMSE(MSE), as well as MSLE 
which were analyzed for the models such as HGS, PRO, 
CMBO, ARCHOA, DO and GOA for 60, 70, 80 and 90 LPs 
which is compared with our proposed IHGS model that is 
shown in Fig. 5. "MAE is indeed a metric of error between 
matched observations reflecting the same phenomena in 
statistics." The MAE should be less to increase forecast 
accuracy. Our proposed IHGS method obtain the MAE value 
of 0.48, 0.45, 0.42 and 0.4 for 60, 70, 80 and 90 LPs which is 
lower than other conventional methods. MSLE may be 
regarded of as a measurement of the ratio between true as well 
as forecasted values. When HGS method achieves the high 
MAPE values of 2.3, 1.5, 0.7 and 2.0 for 60, 70, 80,90 LPs, our 
proposed IHGS method obtain the values of 0.5, 0.4, 0.3 and 
0.2.Unlike MAE, RMSE doesn't really handle every error in 
the same way. It prioritises the most critical errors. That 
implies that a single large mistake might result in a very bad 
RMSE. Our proposed IHGS approach yields MSE values of 
0.49, 0.46, 0.43, as well as 0.42 for all LPs, which is lower than 
other standard approaches. In statistics, the MAPE, also 
referred as the MAPD, is specified as "a metric of prognosis 
accuracy of a forecasting technique". "The MSE or MSD of an 
estimator in statistics estimates the average of the squares of 
the errors, or the average squared difference between the 
predicted as well as real values." For optimized prediction, the 
MSE and MAPE must be lower. When the CMBO approach 
produces MSLE values of 0.27, 0.22, 0.23, 0.26, our proposed 
IHGS method achieves lower values of 0.23, 0.22, 0.21, 0.20, 
demonstrating that our proposed IHGS method can outperform 
other standard compiler optimization forecasting models. 
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(a)  (b) 

  

(c) (d) 

Fig. 4. Comparison of performance matrices such as (a)Accuracy, (b)Precision, (c) Sensitivity, (d) Specificity. 

  

(a) (b) 

  

(c) (d) 

Fig. 5. Comparison of performance such as (a) MAE, (b) MAPE, (c) MSE, (c) MSLE. 
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(a) (b) 

Fig. 6. Comparison of MSC and Cost function values for different LPs. 

The cost function for 0-50 iterations was evaluated in this 
work, to assess the performance of our proposed IHGS model 
which is shown in Fig. 6(a). When cost function of CMBO is 
1.074, our proposed method obtains the value of 1.052 for 
iteration 0 whereas 1.058 and 1.062 for GOA method which 
states that IHGS method has the lowest cost function for all 
five iterations. A more trustworthy statistical rate known as the 
Matthews correlation coefficient (MCC) was evaluated, which 
yields a high score only if the prediction performed well in all 
the confusion matrix classes which are given in Fig. 6(b). MCC 
values of all the LPs were 0.67, 0.68, 0.7 and 0.9 for our 
proposed IHGS method which proves our prediction was 
performed well with good results. 

The F-measure is derived as the harmonic mean of 
accuracy as well as recall, with equal weighting for each. It 

enables a system to be assessed utilizing a single score that 
accounts for both accuracy and recall that is useful for 
reporting system performance as well as comparing models. 
With F1 measure, fnr, fpr, as well as npv values were also 
estimated and compared with conventional models which is 
shown in Fig. 7. In comparison to the CMBO as well as 
ARCHOA approaches, our proposed IHGS method achieves f1 
measure values of 0.9, 0.92, 0.93, and 0.95 for all LPs. The 
IHGS approach produces anpv value of 0.92 for 90 LP, 
whereas the CMBO and ARCHOA methods yield relatively 
low values such as 0.6 and 0.68. Our proposed IHGS technique 
achieves fpr values of 0.13, 0.12, 0.11, and 0.05, and assessed 
fnr values of 0.13, 0.12, 0.11, and 0.04, which are lower than 
other traditional methods, demonstrating that IHGS method 
achieves superior performance than other methods. 

  
(a) (b) 

  
(c) (d) 

Fig. 7. Comparison of performance matrices (a) F1 measure, (b) fnr, (c) fpr, (d) npv values. 
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The computation time for each method which is compared 
with our proposed IGHS method is shown in Table I which 
shows that IGHS method have low computational time of 
55.64. Accuracy and error matrices also compared with 
without optimization, to evaluate the performance of our 
proposed IGHS method which is given in Tables II and III. 
Without optimization our proposed method achieves only 88% 
accuracy whereas, with optimization it achieves 95% accuracy. 

TABLE I. COMPUTATIONAL TIME COMPARISON FOR CONVENTIONAL 

AND PROPOSED APPROACHES 

Methods Computation time 

HGS 76.2114 

PRO 200.538 

CMBO 537.269 

ARCHOA 139.731 

DO 95.0285 

GOA 111.956 

IHGS 55.6467 

TABLE II. PERFORMANCE MATRICES OF THE PROPOSED IGHS METHOD 

(ACCURACY MATRICES) WITH AND WITHOUT OPTIMIZATION 

Accuracy matrices 
Proposed with 

Optimization 

Proposed without 

Optimization 

sensitivity 0.955614 0.882424 

specificity 0.949348 0.765633 

accuracy 0.933705 0.843407 

precision 0.955031 0.882424 

F -measure 0.936337 0.882424 

mcc 0.892841 0.648057 

npv 0.903579 0.765633 

fpr 0.050652 0.234367 

fnr 0.044386 0.117576 

TABLE III. PERFORMANCE MATRICES OF THE PROPOSED IGHS METHOD 

(ERROR  MATRICES) WITH AND WITHOUT OPTIMIZATION 

Error matrices 
Proposed with 

Optimization 

Proposed without 

Optimization 

MSE 0.388571 0.515957 

MAE 0.388571 0.515957 

MSLE 0.185908 0.247893 

MAPE 1.43E+14 2.32E+15 

Table IV Shows the RMSE values obtained for distinct 
datasets and statistical tests such as Wilcoxon and chi-square 
were conducted for conventional and proposed methods and 
the p, statistic values were tabulated in Tables V and VI which 
proves the effectiveness of our proposed compiler optimization 
prediction approach. 

TABLE IV. RMSE FOR EACH BENCHMARK IN THE DATASET 

Bench mark RMSE 

400.perlbench 0.701 

401.bzip2 0.707107 

403.gcc 0.701 

429.mcf 6.61E-01 

445.gobmk 0.809156 

456.hmmer 0.75 

458.sjeng 0.75 

462.libquantum 0.707107 

464.h264ref 0.661438 

471.omnetpp 0.696107 

473.astar 0.612372 

483.xalancbmk 0.644378 

TABLE V. COMPARISON OF WILCOXAN TEST RESULTS FOR PROPOSED 

AND CONVENTIONAL METHODS 

Methods P value Statistic 

HGS 1.36E-06 253 

PRO 6.48E-18 2701 

CMBO 2.54E-29 7475 

ARCHOA 6.97E-29 7.63E+03 

DO 3.55E-12 1128 

GOA 2.54E-29 7475 

IHGS 2.54E-29 7875 

TABLE VI. CHI-SQUARE TEST RESULTS FOR PROPOSED AND TRADITIONAL 

TECHNIQUES 

Methods P value Statistic 

HGS 5.83E-03 45 

PRO 8.83E-05 59 

CMBO 5.83E-03 45 

ARCHOA 5.83E-03 4.50E+01 

DO 4.37E-06 68 

GOA 5.83E-03 45 

IHGS 1.54E-06 71 

V. CONCLUSION 

Selecting the optimal, or even a good, combination of 
optimizations for an unpredictable programmed on an arbitrary 
design is a task so tough that traditional manual analysis 
approaches are impractical. For that reason, a novel 
optimization prediction model with improved optimization was 
developed in this work, which has three working phases 
including model training, feature selection as well as feature 
exploitation phase. First, the inputs are being sent to the model 
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training phase that aims to link the appropriate weights as well 
as bias to a learning algorithm in order to minimize a loss 
function throughout the validation range. The retrieved 
characteristics, including static, dynamic, and enhanced 
entropy, were then transferred to the model exploitation phase, 
where the best features was determined using the improved 
chaos game optimization. These improved characteristics were 
fed into a Convolutional Neural Network to predict the 
appropriate compiler optimization. 
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